a2 United States Patent
Aggarwal

US009471645B2

US 9,471,645 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) MECHANISMS FOR PRIVATELY SHARING
SEMI-STRUCTURED DATA

(75) Inventor: Charu C. Aggarwal, Yorktown

Heights, NY (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1979 days.

(21) Appl. No.: 12/568,976

(22) Filed: Sep. 29, 2009
(65) Prior Publication Data
US 2011/0078143 Al Mar. 31, 2011
(51) Imt.CL
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01)
(52) US. CL
CPC ..o GO6F 17/30539 (2013.01)
(58) Field of Classification Search
USPC ittt 707/737, 756

OTHER PUBLICATIONS

Aggarwal, Charu C. et al., “Finding Generalized Projected Clusters
in High Dimensional Spaces”, ACM SIGMOD Conference, 2000,
12 pages.

Kuramochi, Michihiro et al., “Frequent Subgraph Discovery”, IEEE
International Conference on Data Mining (ICDM), 2001, 14 pages.
Zaki, Mohammed JI. et al., “XRules: An Effective Structural Clas-
sifier for XML Data”, SIGKDD Conference, 2003, 10 pages.
Zhou, Bin et al., “A Brief Survey on Anonymization Techniques for
Privacy Preserving Publishing of Social Network Data”, ACM
SIGKDD Explorations Newsletter, vol. 10, Issue 2 (Dec. 2008),
Session: Contributed articles table of contents, pp. 12-22, Year of
Publication: 2008, ISSN:1931-0145, Publisher: ACM, (Section 4,
4.1), http://www.sigkdd.org/explorations/issues/10.

Zhou, Bin et al., “Preserving Privacy in Social Networks Against
Neighborhood Attacks”, Proceedings of the ICDE Conference,
2008, pp. 506-515.

(Continued)

Primary Examiner — Sherief Badawi

Assistant Examiner — Christopher J Raab

(74) Attorney, Agent, or Firm — Stephen J. Walder, Jr.;
Mercedes L. Hobson

(57) ABSTRACT

Mechanisms are provided for anonymizing data comprising
a plurality of graph data sets. The mechanisms receive input
data comprising a plurality of graph data sets. Each graph
data set comprises data for generating a separate graph from
graphs associated with other graph data sets. The mecha-

See application file for complete search history. . .
PP P 4 nisms perform clustering on the graph data sets to generate

a plurality of clusters. At least one cluster of the plurality of
clusters comprises a plurality of graph data sets. Other
clusters in the plurality of clusters comprise one or more
graph data sets. The mechanisms also determine, for each
cluster in the plurality of clusters, aggregate properties of the
cluster. Moreover, the mechanisms generate, for each cluster

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0274062 Al* 12/2006 Zhang et al. ... 345/420
2007/0203870 Al* 82007 Saito 706/52

%8?5;8(1)?3‘22; ﬁi: Zgg?g grossh%t al. oo 7073/ ég;‘z 51; in the plurality of clusters, pseudo-synthetic data represent-
erschbaum et al.
5010/0205176 A1l* 8/2010 Jietal oo 707/737 ing the cluster, from the determined aggregate properties of

the clusters.

2010/0268719 Al* 10/2010 Cormode et al. .. 707/756
2010/0268725 Al* 10/2010 Wang et al. 707765
2011/0041184 Al* 2/2011 Cormode et al. 726/26 20 Claims, 6 Drawing Sheets

START

RECEIVE SET OF

GRAPHS AND AN 110
ANONYMITY LEVEL K[\~

ASINPUT

)

GENERATE CLUSTERS
OF GRAPHS FROM
UNDERLYING GRAPHS | 420

WITHTHEUSE OF 1~/
STRUCTURAL
CLUSTERING

APPROACH

!

DETERMINE
AGGREGATE
PROPERTIES OF EACH| 499
INDIVIDUAL CLUSTER |~/
AND STORE
AGGREGATE
PROPERTIES FOR ALL

!

GENERATE SYNTHETIC
DATASETS AND USE
PROBABILISTIC

SAMPLNGFROM [~
AGGREGATE
PROPERTIES OF
CLUSTERS

US 9,471,645 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Aggarwal, Charu C. et al., “A Condensation Approach to Privacy
Preserving Data Mining”, Proceedings of the EDBT Conference,
2004, 18 pages.

Agrawal, Rakesh et al., “Fast Algorithms for Mining Association
Rules”, VLDB Conference, 1994, 13 pages.

Agrawal, Dakshi et al., “On the Design and Quantification of
Privacy Preserving Data Mining Algorithms”, Proceedings of the
ACM PODS Conference, 2001, pp. 247-255.

Agrawal, Rakesh et al., “Privacy-Preserving Data Mining”, Pro-
ceedings of the ACM SIGMOD Conference, 2000, pp. 439-450.
Cormode, Graham et al., “Anonymizing Bipartite Graph Data Using
Safe Groupings”, VLDB Conference, 2008, 12 pages.

Ferrer Sumsi, Miguel et al., “Theory and Algorithms on the Median
Graph. Application to Graph-based Classification and Clustering”,
http://wwwi/tesisenxarxa.net/ TESIS_ UAB/AVAILABLE/TDX-
0212109-100250//mfsldel.pdf, Section 7.2.1, 174 pages.

Hay, Michael et al., “Anonymizing Social Networks”, Section 2.2,
http://kdl.cs.umass.edu/papers/hay-et-al-tr0719.pdf, pp. 1-17.

Hay, Michael et al., “Resisting Structural Re-identification in
Anonymized Social Networks”, ACM, VLDB ’08, Aug. 24-30,
2008, pp. 1-13.

Hlaoui, Adel et al., “Median Graph Computation for Graph Clus-
tering”, Soft Computing—A Fusion of Foundations, Methodologies
and Applications, vol. 10, No. 1 / Jan. 2006, 12 pages, ISSN
1432-7643 (Print) 1433-7479 (Online), Published online: Apr. 29,
2005, Publisher: Springer-Verlag, Abstract, Sections 2.1, 3.2, http://
www.dmi.usherb.ca/~hlaoui/Soft_ Computing.pdf.

Lee, Jeongkyu et al., “Clustering of Video Objects by Graph
Matching”, Multimedia and Expo, 2005. ICME 2005. IEEE Inter-
national Conference on vol. , Issue , Jul. 6-6, 2005 pp. 394-397,
Publisher: IEEE, Section 4, http://www 1bpt.bridpeport.edu/~jelee/
pubs/icme05 .pdf, 4 pages.

Liu, Kun et al., “Towards Identity Anonymization on Graphs”,
ACM SIGMOD Conference 2008, 14 pages.

Machanavajjhala, Ashwin et al., “I-Diversity: Privacy Beyond
k-Anonymity”, ICDE, 2006, pp. 1-12.

Samarati, Pierangela et al., “Protecting Privacy when Disclosing
Information: k-Anonymity and Its Enforcement through General-
ization and Suppression”, Proceedings of the IEEE on Research in
Security and Privacy, May 1998, pp. 1-19.

Verykios, Vassilios S. et al., “State-of-the-art in Privacy Preserving
Data Mining”, SIGMOD Record, 33(1), 2004, pp. 50-57.

Ying, Xiaowei et al., “Randomizing Social Networks: a Spectrum
Preserving Approach”, SIAM SDM 2008, pp. 739-750.

* cited by examiner

U.S. Patent

Oct. 18,2016 Sheet 1 of 6 US 9,471,645 B2
100
| 110
104
| 112
106
114
206~_| PROCESSING 200
UNIT
210 202 208 216 236
2 ; g ;
GRAPHICS MAIN AUDIO
PROCESSOR |—1 NBMCH (= yiemory ADAPTER Sio
204
240 238
BUS
N Bus SBICH ¢
USB AND KEYBOARD
DISK || cD-ROM T\EDI\V'\:’?ERFE OTHER gg\'ﬁgg AND MOUSE | | MODEM || RoM
PORTS ADAPTER
226 230 212 232 234 220 222 224

FiIG. 2

U.S. Patent

US 9,471,645 B2

Oct. 18, 2016 Sheet 2 of 6
SYNTHETIC DATA
CONTROLLER CLEE‘(QIE'\TI;NG GENERATION
310 330 ENGINE
330 350
AN yAN AN
4 4 4
yaN FaN FaN
4 4 4
AGGREGATE PRIVATE DATA
INTERFACE PROPERTIES SHARING
320 ENGINE ENGINE
340 360
SET OF
GRAPHS AND SYNTHETIC
ANONYMITY DATA
LEVEL K 370
305

FIG. 3

U.S. Patent Oct. 18, 2016

FiIG. 4

(smRT)
Y

RECEIVE SET OF
GRAPHS AND AN

AS INPUT

!

Sheet 3 of 6

GENERATE CLUSTERS
OF GRAPHS FROM
UNDERLYING GRAPHS
WITH THE USE OF
STRUCTURAL
CLUSTERING
APPROACH

l

DETERMINE
AGGREGATE
PROPERTIES OF EACH
INDIVIDUAL CLUSTER
AND STORE
AGGREGATE
PROPERTIES FOR ALL
CLUSTERS

'

GENERATE SYNTHETIC
DATA SETS AND USE
PROBABILISTIC
SAMPLING FROM
AGGREGATE
PROPERTIES OF
CLUSTERS

'
C =m0)

410
ANONYMITY LEVEL K| \—

420

430

440

US 9,471,645 B2

U.S. Patent

FIG. 5

Oct. 18, 2016

(sIRT)

'

CREATE INITIAL SET
OF SEEDS

Sheet 4 of 6

510
AV

l<

PERFORM ITERATIVE
PROCESS BY
ASSIGNING EACH

520

GRAPH IN THE INPUT "\

DATASETTO A
CLOSEST SEED

'

PARTITION DATA

AMONGTHE 330

DIFFERENT SEEDS

v

USE FREQUENT
PATTERN MINING TO
RECREATE NEW
IMPROVED SET OF
SEEDS

540
I~/

NO
REPORT 560
ASSIGNMENT OF
DATA POINTS AS
FINAL RESULT

l

¢ END)

US 9,471,645 B2

U.S. Patent

Oct. 18, 2016

FIG. 6

Sheet 5 of 6

(. siART)
v

DETERMINE
RELATIVE
FREQUENCY OF
EACH EDGE IN A
CLUSTER

¢

DETERMINE TOTAL
NUMBER OF DATA
POINTS IN THE
CLUSTER

!

DETERMINE
CORRELATION
BETWEEN EVERY
PAIR OF EDGES IN
CLUSTER AND
STORE RESULTS IN
MATRIX DATA
STRUCTURE

'

STORE CLUSTER-
SPECIFIC
STATISTICS FOR
LATER USE

l

¢ END

610

620

630

640

US 9,471,645 B2

U.S. Patent

Oct. 18, 2016

FIG. 7

Sheet 6 of 6

(. siRT)

'

DETERMINE
EIGENVECTORS FOR
EACH CLUSTER

f\/710

l

GENERATE DATA
POINTS FOR EACH
CLUSTER BASED ON
THESE
EIGENVECTORS

720
N\

l

APPLY ROUNDING
OPERATION TO THE
GENERATED DATA IN
ORDER TO REDUCE
THE DATATO
BINARY VALUES

730
oY

'

REPORT ROUNDED
VALUES AS FINAL
ANONYMIZED
OUTPUT VALUES

740
oY

:

APPLY
APPLICATIONS TO
ANONYMIZED
OUTPUT VALUES

750
N/

Y

C END D)

US 9,471,645 B2

US 9,471,645 B2

1

MECHANISMS FOR PRIVATELY SHARING
SEMI-STRUCTURED DATA

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for privately sharing semi-structured data,
such a network structure data, for example.

The problem of privacy-preserving data mining has
attracted considerable attention in recent years because of
increasing concerns about the privacy of the underlying
data. In recent years, an important data domain which has
emerged is that of graphs and structured data. Graphs are
data structures used to represent complex systems using
nodes and edges between nodes. An object, or a part of an
object, is represented by a node and the interrelationship
between two objects is represented by an edge. Many
different types of data sets are naturally represented as
graphs, such as Extensible Markup Language (XML) data
sets, transportation network data sets, data sets representing
traffic in IP networks, social network data sets, hierarchically
structured data sets, and the like.

Existing work on graph privacy has focused on the
problem of anonymizing nodes or edges of a single graph,
in which the identity is assumed to be associated with
individual nodes. There are many examples of approaches to
graph privacy that have been devised. For example, R.
Agrawal et al., “Privacy-Preserving Data Mining,” Proceed-
ings of the ACM SIGMOD Conference, pp. 439-450, 2000
establishes the field of privacy preserving data mining in the
context of database mining. This paper describes how useful
mining information can be extracted from randomized data.
D. Agrawal et al. “On the Design and Quantification of
Privacy Preserving Data Mining Algorithms,” Proceedings
of'the ACM PODS Conference, pp. 247-255, 2001 describes
the tradeoffs between privacy and accuracy in data mining
algorithms. This paper establishes a framework for quanti-
fication of privacy in the context of information theory.

As a further example, in P. Samarati et al., “Protecting
Privacy when Disclosing Information: k-Anonymity and its
Enforcement Through Generalization and Suppression,”
Proceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, May 1998 involves a methodology to
reduce the granularity of the data so that each individual is
indistinguishable from at least k other individuals. More-
over, V. Verykios et al., “State-of-the-Art in Privacy Pre-
serving Data Mining,” SIGMOD Record 33(1): pp. 50-57,
2004 a survey of various privacy preserving data mining
methodologies is provided.

Akey method in privacy preserving data mining is that of
k-anonymity. In the k-anonymity method, the data is trans-
formed such that each record is indistinguishable from at
least k other records in the data set. Because of this trans-
formation, it is much more difficult to use publically avail-
able databases, or other available database, to infer the
identity of the underlying data. Most k-anonymization work
is focused on continuous and categorical data domains (see
P. Samarati et al., discussed above).

The key techniques used for anonymization are those of
generalization and suppression. In the case of a multi-
dimensional data set, the process of generalization refers to
reducing the granularity of representation of the underlying
data. For example, instead of specifying an age attribute
exactly, one may only choose to specify it as a range. In
suppression, one may choose to completely remove either a
record or an attribute value from a record. The idea is to

10

15

20

25

30

35

40

45

50

55

60

65

2

reduce the granularity of representation such that a given
record cannot be distinguished from at least k records in the
data set. This transformed data can then be used for privacy-
preserving or other mining applications.

An alternative to data generalization and suppression is
that of synthetic pseudo-data generation which preserves the
aggregate properties of the original data. one technique for
performing such synthetic pseudo-data generation is
described in C. C. Aggarwal, “A Condensation Based
Approach to Privacy Preserving Data Mining,” Proceedings
of'the EDBT Conference, pp. 183-199, 2004. The process of
synthetic pseudo-data generation requires creation of groups
of tightly clustered records followed by estimation of the
statistical properties of each of these clusters. These esti-
mated statistical properties are used in order to generate the
data records from each of the clusters. The core idea is that
while the generate data is synthetic, it preserves the aggre-
gate properties and can therefore be used in conjunction with
data mining tasks, such as classification, which are depen-
dent upon aggregate properties of the original data.

Regardless of which anonymization technique used, it
should be appreciated that these known anonymization
techniques only operate on a single individual graph. That is,
the anonymization technique are not applied to a plurality of
graphs.

SUMMARY

In one illustrative embodiment, a method, in a data
processing system, is provided for anonymizing data com-
prising a plurality of graph data sets. The method comprises
receiving input data comprising a plurality of graph data
sets. Each graph data set comprises data for generating a
separate graph from graphs associated with other graph data
sets. The method further comprises performing clustering on
the graph data sets to generate a plurality of clusters. At least
one cluster of the plurality of clusters comprises a plurality
of graph data sets. Other clusters in the plurality of clusters
comprise one or more graph data sets. The method also
comprises determining, for each cluster in the plurality of
clusters, aggregate properties of the cluster. Moreover, the
method comprises generating, for each cluster in the plural-
ity of clusters, pseudo-synthetic data representing the clus-
ter, from the determined aggregate properties of the clusters.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various
ones, and combinations of, the operations outlined above
with regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/appara-
tus is provided. The system/apparatus may comprise one or
more processors and a memory coupled to the one or more
processors. The memory may comprise instructions which,
when executed by the one or more processors, cause the one
or more processors to perform various ones, and combina-
tions of, the operations outlined above with regard to the
method illustrative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be

US 9,471,645 B2

3

understood by reference to the following detailed descrip-
tion of illustrative embodiments when read in conjunction
with the accompanying drawings, wherein:

FIG. 1 is an example diagram of a distributed data
processing system in which aspects of the illustrative
embodiments may be implemented;

FIG. 2 is an example diagram of a data processing
apparatus/device in which example aspects of the illustrative
embodiments may be implemented;

FIG. 3 is an example block diagram illustrating the
primary operational elements of a graph privacy engine in
accordance with one illustrative embodiment;

FIG. 4 is an example flowchart outlining an example
overall operation for sharing semi-structured data while
maintaining privacy of the underlying data;

FIG. 5 is an example flowchart outlining an example
operation for performing clustering of graphs in order to
construct anonymized graph clusters in accordance with one
illustrative embodiment;

FIG. 6 is an example flowchart outlining an example
process for determining aggregate statistics of the underly-
ing data using the clustering described with regard to FIG.
5 above, in accordance with one illustrative embodiment;
and

FIG. 7 is an example flowchart outlining an example
process of generating synthetic data from aggregate statistics
of clusters of graphs in accordance with one illustrative
embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide a mechanism for
privately sharing semi-structured data, such as network
structure data. The mechanisms of the illustrative embodi-
ments provide an anonymization mechanism to apply trans-
formations to a plurality of graphs such that the privacy of
the nodes and/or edges is maintained. The anonymization
mechanism of the illustrative embodiments operates on a
collection of a plurality of graphs, such as may be found in
applications with semi-structured data, for example, rather
than a single graph. In cases where there is semi-structured
data comprising a collection of graphs, the identity is
associated with entire graphs rather than portions of a single
graph.

Anonymization of entire graphs is a difficult problem
because information about small portions of the graph can
expose the identity of the entire graph. Moreover, known
methods, such as k-anonymization, are typically dependent
upon some notion of proximity, which is difficult to define
in the case of structured data or semi-structured data because
structural similarity can often manifest itself in the form of
an isomorphism which is a computationally difficult prob-
lem to begin with. Since the pairwise isomorphism problem
is extremely difficult, the problem of partitioning the data
into sets of similar structures (with cardinality of at least k)
is even more challenging. That is, the pairwise isomorphism
problem is well known to be NP-hard, while the partitioning
problem is a generalization of the pairwise isomorphism
problem and thus, is even more difficult (see
www2.computer.org/portal/web/csdl/doi/10.1109/
SFCS.2000.892080).

As a result of these difficulties, the illustrative embodi-
ments focus on an approach which uses the aggregate
properties of the collection in order to generate synthetic
data which preserves these properties. While synthetic data
generation techniques have been explored in the context of
multi-dimensional numerical data (see C. C. Aggarwal, “A

10

15

20

25

30

35

40

45

50

55

60

65

4

Condensation Based Approach to Privacy Preserving Data
Mining,” Proceedings of the EDBT Conference, pp. 183-
199, 2004), there are no existing methods for the case of
graph data. The format of the multi-dimensional numerical
data is very different from graph data and thus, algorithms
for multi-dimensional numerical data cannot be used for
graph data.

For example, in the case of multi-dimensional data one
can express the data as a sequence of numbers and therefore,
privacy-preserving operations are very simple. This is
because numerical data easily allows the computation of
aggregate statistics which can be reported easily. For
example, if one has a survey of households with numerical
sequences corresponding to income, one can just report the
mean and preserve privacy. However, there are no equiva-
lent statistical constructs for graph structured data, which is
inherently not numerical or multi-dimensional in nature.
Thus, the design of a graph-structural analogue is particu-
larly challenging because the determination of aggregate
properties pose several challenges in the context of the
structural behavior of graphs.

The illustrative embodiments perform the anonymization
of the underlying graphs in the collection of graphs using a
structural similarity approach. The key is to create clusters
of similar graphs which share common structural properties.
These clusters of similar graphs are used in order to con-
struct a set of graph group super-structures. Each cluster
super-structure represents the representative structure prop-
erties of the cluster of similar graphs (an example of the
representative structure properties being a set of frequent
sub-graphs of the original graphs). Thus, the cluster super-
structures are condensed representations of the cluster of
graphs. These representative structural properties of the
cluster super-structures are used to generate synthetic rep-
resentations of the underlying graph structures of the indi-
vidual graphs in the corresponding clusters of graphs. These
synthetic representations retain the aggregate properties of
the underlying data and therefore, can be used for a variety
of database and data mining applications.

One example of such an application is a classification
application in which one has a set of instances which are
labeled and one is attempting to determine the label of a
particular test instance. For example, one could have the
graphs describing a set of networks, some of which have
been attacked by a computer virus or the like, and some that
have not. One can then create a model which determines
whether or not an attack has happened based on the structure
of the underlying network.

Another example of an application is frequent pattern
mining in which one attempts to determine the typical
patterns in the underlying network. For these and other types
of applications, the mechanisms of the illustrative embodi-
ments operate to provide an effective representation of the
underlying data without losing privacy.

In general, the mechanisms of the illustrative embodi-
ments receive a set of original graphs and an anonymization
level k as input. Clusters are created from the underlying
graphs with the use of a structural clustering approach. Each
cluster contains at least k graphs. The aggregate properties
of the clusters, e.g., a set of frequent sub-graphs of a given
graph collection, are computed and stored for use in gener-
ating synthetic, or pseudo-synthetic, data sets. The synthetic,
or pseudo-synthetic, data sets are generated with the use of
probabilistic sampling from the aggregate properties of the
clusters. Since each cluster is tightly knit, the overall aggre-
gate statistics of the data is properly maintained. The syn-
thetic, or pseudo-synthetic, data sets may be used in con-

US 9,471,645 B2

5

junction with a wide variety of applications, such as those
involving data mining problems which are dependent upon
the aggregate properties of the original data sets of the set of
original graphs.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, or com-
puter program product. Accordingly, aspects of the present
invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
any one or more computer readable medium(s) having
computer usable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CDROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this docu-
ment, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of
a carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Computer code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, radio frequency (RF), etc., or any suitable combina-
tion thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java™, Smalltalk™, C++, or the like, and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide

10

15

20

25

30

35

40

45

50

55

60

65

6

area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions that
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus, or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowcharts and block diagrams in the figures
described hereafter illustrate the architecture, functionality,
and operation of possible implementations of systems, meth-
ods and computer program products according to various
embodiments of the present invention. In this regard, each
block in the flowchart or block diagrams may represent a
module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

With reference now to the figures, the illustrative embodi-
ments may be utilized in many different types of data
processing environments including a distributed data pro-
cessing environment, a single data processing device, or the
like. In order to provide a context for the description of the
specific elements and functionality of the illustrative
embodiments, FIGS. 1 and 2 are provided hereafter as
example environments in which aspects of the illustrative
embodiments may be implemented. While the description
following FIGS. 1 and 2 will focus primarily on a single data

US 9,471,645 B2

7

processing device implementation, this is only an example
and is not intended to state or imply any limitation with
regard to the features of the present invention. To the
contrary, the illustrative embodiments are intended to
include distributed data processing environments and other
embodiments in which applications are to operate on aggre-
gate properties of a set of graphs, for which the mechanisms
described herein may be used to maintain the privacy of the
underlying data sets of the set of graphs.

With reference now to the figures and in particular with
reference to FIGS. 1-2, example diagrams of data processing
environments are provided in which illustrative embodi-
ments of the present invention may be implemented. It
should be appreciated that FIGS. 1-2 are only examples and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
present invention may be implemented. Many modifications
to the depicted environments may be made without depart-
ing from the spirit and scope of the present invention.

With reference now to the figures, FIG. 1 depicts a
pictorial representation of an example distributed data pro-
cessing system in which aspects of the illustrative embodi-
ments may be implemented. Distributed data processing
system 100 may include a network of computers in which
aspects of the illustrative embodiments may be imple-
mented. The distributed data processing system 100 contains
at least one network 102, which is the medium used to
provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the
like. In the depicted example, server 104 provides data, such
as boot files, operating system images, and applications to
the clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the present invention, and therefore, the particular ele-
ments shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an
example data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 in FIG. 1, in which computer usable code or

40

45

8

instructions implementing the processes for illustrative
embodiments of the present invention may be located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge
and input/output (I/O) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are connected to NB/MCH 202. Graphics processor 210
may be connected to NB/MCH 202 through an accelerated
graphics port (AGP).

In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (HDD) 226, CD-ROM
drive 230, universal serial bus (USB) ports and other com-
munication ports 232, and PCI/PCle devices 234 connect to
SB/ICH 204 through bus 238 and bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCle does not. ROM 224 may be, for
example, a flash basic input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH
204 through bus 240. HDD 226 and CD-ROM drive 230
may use, for example, an integrated drive electronics (IDE)
or serial advanced technology attachment (SATA) interface.
Super /O (S10) device 236 may be connected to SB/ICH
204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within the data processing system 200 in
FIG. 2. As a client, the operating system may be a commer-
cially available operating system such as Microsoft® Win-
dows® XP (Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other countries,
or both). An object-oriented programming system, such as
the Java™ programming system, may run in conjunction
with the operating system and provides calls to the operating
system from Java™ programs or applications executing on
data processing system 200 (Java is a trademark of Sun
Microsystems, Inc. in the United States, other countries, or
both).

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System p® computer system,
running the Advanced Interactive Executive (AIX®) oper-
ating system or the LINUX® operating system (eServer,
System p, and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both while LINUX is a trademark of Linus Torvalds in the
United States, other countries, or both). Data processing
system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in
FIG. 2, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of
communication fabric or architecture that provides for a

US 9,471,645 B2

9

transfer of data between different components or devices
attached to the fabric or architecture. A communication unit,
such as modem 222 or network adapter 212 of FIG. 2, may
include one or more devices used to transmit and receive
data. A memory may be, for example, main memory 208,
ROM 224, or a cache such as found in NB/MCH 202 in FIG.
2.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-2. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data
processing system 200 may be a portable computing device
which is configured with flash memory to provide non-
volatile memory for storing operating system files and/or
user-generated data, for example. Essentially, data process-
ing system 200 may be any known or later developed data
processing system without architectural limitation.

As mentioned above, the illustrative embodiments pro-
vide mechanisms for anonymizing semi-structured data
comprising a plurality of graph data sets so that the data can
be shared without compromising the privacy of the data.
Thus, with the mechanisms of the illustrative embodiments,
the graph data sets may be stored in a permanent storage,
such as the hard disk 226 in FIG. 2, and may be processed
by the mechanisms of the illustrative embodiments which
may be embodied, for example, in a program executing on
a processor, such as processor 206 in FIG. 2, such that the
graph data sets may be anonymized and used by an appli-
cation that operates on aggregate characteristics of the graph
data sets, e.g., a data mining application, categorization
application, or the like. It should be appreciated that the
mechanisms of the illustrative embodiments may be distrib-
uted over a plurality of computing devices such as shown in
FIG. 1. For example, the graph data sets may be stored in a
network attached storage, such as storage 108 in FIG. 1, the
mechanisms of the illustrative embodiments may be imple-
mented in a server, such as server 106, and results may be
provided to a client computing device, such as client 110.

FIG. 3 is an example block diagram illustrating the
primary operational elements of a graph privacy engine in
accordance with one illustrative embodiment. The elements
shown in FIG. 3 may be implemented in hardware, software,
or any combination of hardware and software. In one
illustrative embodiment, the elements of FIG. 3 are imple-
mented as software executing on one or more processors of
one or more data processing devices or systems.

As shown in FIG. 3, the operational components include
a controller 310 that orchestrates the overall operation of the
other elements 320-360. An interface 320 is provided for
receiving input graph data sets and an anonymity level k 305
for performing the generation of synthetic data based on the
aggregate properties determined from the clustered data
points of the input graph data sets. The input graph data sets
and anonymity level k are provided to the clustering engine
330 which creates clusters of graphs from the underlying

20

25

40

45

50

55

10

input data graphs with the use of a structural clustering
approach, each cluster containing at least k graphs. More
details regarding the operation of the clustering engine 330
will be provided hereafter with regard to step 420 in FIG. 4
and FIG. 5.

Once the clustering is performed by the clustering engine
330, the aggregate properties engine 340 determines the
aggregate properties of the clusters, e.g., a set of frequent
sub-graphs of a given graph collection, which are then stored
for use in generating synthetic, or pseudo-synthetic, data
sets. More details regarding this operation will be provided
hereafter with regard to step 430 in FIG. 4 and FIG. 6.

Having determined the aggregate properties of the clus-
ters, the synthetic data generation engine 350 generates
synthetic, or pseudo-synthetic, data sets using probabilistic
sampling from the aggregate properties of the clusters. More
details with regard to the operation of the synthetic data
generation engine 350 will be provided hereafter with regard
to step 440 in FIG. 4 and FIG. 7. The resulting synthetic, or
pseudo-synthetic, data sets 370 may then be shared via the
private data sharing engine 360 with other applications to
achieve the purposes of the other applications while main-
taining the privacy of the original graph data sets. The
synthetic, or pseudo-synthetic, data sets 370 may be used in
conjunction with a wide variety of applications, such as
those involving data mining problems, which are dependent
upon the aggregate properties of the original data sets of the
set of original graphs.

FIG. 4 is an example flowchart outlining an example
overall operation for sharing semi-structured data while
maintaining privacy of the underlying data. As shown in
FIG. 4, the operation starts with receiving a set of graphs and
an anonymity level k as input (step 410). Clusters of graphs
are created from the underlying graphs with the use of a
structural clustering approach (step 420). Each cluster con-
tains at least k graphs. More detail regarding step 420 will
be provided hereafter with reference to FIG. 5.

The aggregate properties of the clusters, e.g., a set of
frequent sub-graphs of a given graph collection, are com-
puted and stored for use in generating pseudo-synthetic data
sets (step 430). More details regarding step 430 will be
provided hereafter with regard to FIG. 6. The synthetic, or
pseudo-synthetic, data sets are generated with the use of
probabilistic sampling from the aggregate properties of the
clusters (step 440). More details with regard to step 440 will
be provided hereafter with reference to FIG. 7. Again, since
each cluster is tightly knit, the overall aggregate statistics of
the data is properly maintained. As noted above, the pseudo-
synthetic data sets may be used in conjunction with a wide
variety of applications, such as those involving data mining
problems which are dependent upon the aggregate properties
of the original data sets of the set of original graphs.

FIG. 5 is an example flowchart outlining an example
operation for performing clustering of graphs in order to
construct anonymized graph clusters in accordance with one
illustrative embodiment. In order to create the anonymized
graphs, one of the inputs to the anonymized graph genera-
tion engine is the anonymity level k (received in step 410 in
FIG. 4). This anonymity level is used in order to perform the
data mining of the underlying graphs. The anonymity level
also denotes the constraint for the clustering process. Spe-
cifically, the anonymity level denotes the minimum number
of records in each cluster.

In order to create such clusters, a partition based cluster-
ing approach is followed. Since the anonymity level is k, it
follows that each cluster should have at least k members in
order to ensure that the anonymity level for any data

US 9,471,645 B2

11

generated from the cluster is at least k. Therefore, if N is the
total number of data points, there can be no more than N/k
clusters in the original data set. Therefore, the mechanism of
the illustrative embodiment starts with r<=N/k data points as
the initial set of seeds to the clustering mechanism. In each
iteration, a graph data point is assigned to the closest seed,
which has been assigned less than k members so far. If a
selected closest seed has already been assigned k or more
members, then the graph data point is assigned to a seed that
is closest to that selected closest seed which does not have
k or more members.

A “closest” seed may be determined in many different
ways. In one illustrative embodiment, a distance function is
used to determine a closest seed. For example, one could use
a distance function that measures the number of common
edges between the graphs, i.e. the data point graph and the
seed graph, and use this measure to determine a closest seed.
Other measures of closeness can also be used either in
addition to, or in replacement of, the number of common
edges when evaluating a distance function to identify a
closest seed. For example, if one wants to compute the
distance between a given graph and a set of other graphs, one
can determine the number of graphs in the set which are
sub-graphs of a particular graph.

The seeds are defined as collections of graphs rather than
individual graphs themselves. Therefore, each seed is
defined as a set of one or more graphs, where at least one of
the seeds has a plurality of graphs associated with it. The
technique used to define these sets of one or more graphs
will be described in greater detail hereafter. The distance
function between the graphs and the seeds are defined in
terms of the subset relationships between the seeds and the
sub-graphs.

For a given graph, the number of graphs in the seed,
which are a subset of the seed, are computed. The larger the
number of such subsets, the better the measure of similarity
or “closeness.” That is, the way in which the clustering is
performed is to compute the similarity between the input
graphs and the corresponding seeds using the distance
function. Each seed contains multiple graphs and each input
graph is assigned to its closest seed in order to create the
clusters. The concept of “closest” is defined as the number
of graphs in the seed which are a sub-graph of the input
graph.

Once the assignments of input graphs to the seeds have
been performed, the members assigned to each seed are used
to refine the seed. Specifically, the frequent sub-graph pat-
terns, i.e. the set of sub-graphs which occur frequently in a
plurality of input graphs (see, for example, www.users.c-
s.umn.edu/~kuram/papers/fsg.pdf), within each group are
used for a regeneration process of the seeds. This essentially
defines each seed as a set of frequent patterns of the assigned
graphs. This iterative process of assignment and seed refine-
ment is repeated in order to improve the quality of the
underlying clusters. The process is determined to have
converged when the assignment does not change signifi-
cantly from one iteration to the next.

To summarize, one seed corresponds to each cluster and
the seeds are used to create clusters of input graphs. Each
input graph is assigned to the closest seed with the frequent
sub-graphs in each cluster of input graphs are then used to
redefine the seeds. Thus, a circular relationship exists where
seeds create clusters and then the clusters are used to
recreate better seeds. This is done in an iterative process with
continued refinement of the seeds. In one illustrative
embodiment, it is determined that the clusters have not
changed if the average similarity of input graphs to seeds

10

15

20

25

30

35

40

45

50

55

60

65

12

does not change significantly from one iteration to the next.
For example, one can create a threshold of 1% on the
difference in similarity from one iteration to the next such
that if the difference is not greater than 1%, the process is
determined to have converged.

With reference now to FIG. 5, the process for creating the
clusters (with cardinality of at least k) starts by creating an
initial set of seeds (step 510). This initial set of seeds is
sampled from the input data set representing the input
graphs. The iterative process of improving the seed sets and
the corresponding clusters is started in step 520 where each
graph in the input data set is assigned to a closest seed (step
520). Closeness is determined by using a subset operation to
check how many sub-graphs in the seed are a subset of the
corresponding graph.

The input data set is then partitioned among the different
seeds, i.e. a clustering of the input data set to the different
seeds is performed, and this partitioning is then used to
recreate a new improved set of seeds (step 530). For this
purpose, a frequent pattern, or sub-graph, mining mecha-
nism is used to determine the sub-graphs in each partition
(step 540). This set of partition-specific sub-graphs redefine
the new seed set. It should be noted that each iteration
changes the seed set as well as the assignment of the
individual data points to the seeds. Over many iterations the
assignment is likely to converge in the sense that the quality
of the solution is not going to change very much from one
iteration to the next. This condition can be tested by defining
an objective function in terms of the overall similarity
between the data points and the corresponding seeds. When
this similarity change is below a predetermined threshold, it
can be concluded that the convergence criteria has been
satisfied. The quality is essentially defined in terms of the
average similarity of the input data points to the seeds. For
example, as discussed earlier, the similarity of input graphs
to seeds may be defined in terms of the sub-graph relation-
ships with the solution having converged when the value of
the solution does not change more than, for example, 1%,
from one iteration to the next.

The convergence is then tested (step 550). If the conver-
gence condition is satisfied, then the corresponding assign-
ment of data points to clusters is reported (step 560), such as
by displaying, storing, or otherwise outputting the results of
process on or in some medium, and the process terminates.
Otherwise, the process returns to step 520 in order to repeat
the iterative process of refinement of the assignment of the
data points to the different clusters. At the end of the process,
a set of constrained clusters is obtained such that the
cardinality of each cluster is at least equal to the anonymity
level k.

Thus, with the above methodology and mechanisms, a
constrained clustering mechanism operates on graph data
points rather than numerical data points and the resulting
clusters are constraint to be of cardinality k, i.e. the ano-
nymity level k. This is different from typical clustering
algorithms which cluster data points in a single graph.

Once the clusters have been determined through the above
described process, the clusters are used to determine the
aggregate statistics of the underlying data. The aggregate
statistics include relative frequency information of the edges
in the different clusters, and correlation information of the
edges in the different clusters, as defined by a coefficient of
correlation of the presence of the edges between a pair of
graphs. The frequency information of the edges is the
number of times that an edge appears in a plurality of graphs.
The coefficient of correlation between two edges is statisti-
cal definition of the coefficient of correlation, see en.wiki-

US 9,471,645 B2

13

pedia.org/wiki/Correlation, for example. The statistics are
computed separately for each cluster and are stored sepa-
rately for each cluster.

FIG. 6 is an example flowchart outlining an example
process for determining aggregate statistics of the underly-
ing data using the clustering described with regard to FIG.
5 above, in accordance with one illustrative embodiment. As
shown in FIG. 6, the operation starts with the relative
frequency of each edge in a cluster being determined (step
610). The total number of data points in the cluster is
determined (step 620). The number of data points is useful
in computing, for example, the number of synthetic points
which should be constructed for each of the clusters, as
described hereafter. A correlation between every pair of
edges is determined and stored in a matrix data structure
(step 630). The cluster-specific statistics, such as those
described previously, are stored for later use (step 640) and
the operation terminates.

The aggregate statistics determined in FIG. 6 may be used
to generate synthetic data for the different clusters. The data
for each cluster is used in order to generate the synthetic data
for each cluster. The synthetic data for each cluster is
generated by using the correlation structure of the edges.
Specifically, in one illustrative embodiment, the correlation
structure is used to determine the eigenvectors of the cor-
responding covariance matrix. The process of determining
the eigenvectors is well known and is discussed in C. C.
Aggarwal et al., “A Condensation Based Approach to Pri-
vacy Preserving Data Mining,” Proceedings of the EDBT
Conference, pp. 183-199, 2004, and C. C. Aggarwal et al.,
“Finding Generalized Project Clusters in High Dimensional
Spaces,” ACM SIGMOD Conference, 2000, which are
hereby incorporated by reference. The variances of these
eigenvectors are used to generate the data points along these
eigenvectors.

It should be noted that the process is generating binary
data here which corresponds to presence (1) or absence (0)
of an edge. However, the eigenvector approach generates
continuous data. Therefore, the mechanisms of the illustra-
tive embodiments use rounding on the generated values in
order to transform these values to either O or 1. This
approach is applied to each cluster. The resulting graph set
is reported as the final set of synthetic data which can be
used for the purposes of private sharing of the final set of
synthetic data. For example, a network analyst who attempts
to perform an analysis of a network structure may privately
share the final set of synthetic data generated by the mecha-
nisms of the illustrative embodiments. In such cases, the
synthetic data can be used in order to determine the relevant
properties of the network. The synthetic data is not the real
data of the input graph data sets and thus, maintains the
privacy of the original input graph data sets but maps to the
aggregate statistics of the original input graph data sets.

FIG. 7 is an example flowchart outlining an example
process of generating synthetic data from aggregate statistics
of clusters of graphs in accordance with one illustrative
embodiment. As shown in FIG. 7, the process starts by
determining the eigenvectors for each cluster (step 710).
These eigenvectors are used to generate the data points for
each cluster (step 720). Specifically, data points are gener-
ated along each eigenvector in proportion to the standard
deviation of the data long this vector. The standard deviation
of the data long an eigenvector may be determined by
computing the square root of the corresponding Eigenvalue.
Finally, a rounding operation is applied to the generated data
in order to reduce the data to binary values (step 730). These
rounded values are then reported as the final anonymized

20

30

35

40

45

55

14

output values (step 740). Thereafter, one or more various
applications, such as data mining applications, categoriza-
tion applications, and the like, may be run or applied to the
anonymized output values (step 750) and the operation
terminates.

With the mechanisms of the illustrative embodiments set
forth above, private structural data, such as network struc-
tural data, can be anonymized by using an aggregation
process in which clusters of graphs with similar structural
characteristics are generated. The aggregate characteristics
of this cluster are then determined. These aggregate char-
acteristics are then used to generate new synthetic graphs
which retain the characteristics of the original data set. Such
an anonymization process has the advantage that it does not
use any of the attributes of the original data but it only
retains aggregate characteristics. Such aggregate character-
istics can be useful in a variety of applications. For example,
the mechanism of the illustrative embodiments can be used
to generate training models for classification models, such as
the classification models described in C. C. Aggarwal et al.
“XRules: A Framework for Structural Classification of XML
Data,” ACM KDD Conference, 2003. The applicability of
the mechanisms of the illustrative embodiments is not
restricted to classification techniques, however, but can be
used with any data mining mechanism which uses the
aggregate characteristics of the underlying data.

As noted above, it should be appreciated that the illus-
trative embodiments may take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In one example embodiment, the mechanisms of
the illustrative embodiments are implemented in software or
program code, which includes but is not limited to firmware,
resident software, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening /O
controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Moderns, cable modems and Ethernet cards are
just a few of the currently available types of network
adapters.

The description of the present invention has been pre-
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What is claimed is:

1. A method, in a data processing system having a
processor, for anonymizing data comprising a plurality of
graph data sets, comprising:

US 9,471,645 B2

15

receiving, by the processor of the data processing system,
input data comprising a plurality of graph data sets,
wherein each graph data set comprises data for gener-
ating a separate graph from graphs associated with
other graph data sets;

performing, by the processor, clustering on the graph data

sets to generate a plurality of clusters, wherein at least
one cluster of the plurality of clusters comprises a
plurality of graph data sets and wherein other clusters
in the plurality of clusters comprise one or more graph
data sets;

determining, by the processor, for each cluster in the

plurality of clusters, an aggregate property of the clus-
ter;

generating, by the processor, for each cluster in the

plurality of clusters, synthetic data representing the
cluster, from the determined aggregate properties of the
clusters; and

executing, by the processor or another computing device,

one or more applications on the synthetic data to
perform an operation on the synthetic data while pre-
serving a privacy aspect of the input data.

2. The method of claim 1, further comprising receiving,
by the processor, an anonymity level value k, wherein each
cluster in the plurality of clusters comprises at least k
number of graphs.

3. The method of claim 1, wherein the aggregate property
of the cluster comprises a set of frequent sub-graphs of the
cluster.

4. The method of claim 1, wherein performing clustering
on the graph data sets to generate a plurality of clusters
comprises:

creating an initial set of seed graphs; and

assigning, for each graph in the input data, the graph to a

closest seed graph to generate an initial plurality of
clusters.

5. The method of claim 4, wherein performing clustering
on the graph data sets to generate a plurality of clusters
further comprises:

iteratively performing a process comprising:

using a frequent pattern mining operation on the initial
plurality of clusters to recreate a new improved set of
seed graphs;

determining if the process has reached a convergence
state; and

in response to the process not having reached a con-
vergence state, assigning graphs in the input data to
a closest seed graph in the improved set of seed
graphs.

6. The method of claim 1, wherein determining, for each
cluster in the plurality of clusters, an aggregate property of
the cluster comprises determining a relative frequency of
each edge in the cluster, wherein the relative frequency is a
measure of a number of times that an edge appears in each
of the graphs of the cluster.

7. The method of claim 6, wherein determining, for each
cluster in the plurality of clusters, an aggregate property of
the cluster further comprises:

determining a correlation between every pair of edges in

the cluster as defined by a coefficient of correlation of
the presence of the edges between a pair of graphs in
the cluster; and

storing results of determining the correlation between

every pair of edges in a correlation matrix data struc-
ture.

15

35

40

55

60

16

8. The method of claim 7, wherein generating, for each
cluster in the plurality of clusters, synthetic data represent-
ing the cluster comprises:

generating eigenvectors of a corresponding covariance

matrix based on the correlation matrix data structure;
and

generating synthetic data for each cluster in the plurality

of clusters based on the generated eigenvectors.

9. The method of claim 8, wherein generating synthetic
data for each cluster in the plurality of clusters based on the
generated eigenvectors comprises:

generating data points for each cluster based on the

eigenvectors;

applying a rounding operation to the data points generated

based on the eigenvectors to thereby generate binary
values based on the data points generated based on the
eigenvectors; and

reporting the binary values as an anonymized data set for

the input data.

10. The method of claim 9, further comprising:

executing one or more applications on the anonymized

data set to perform an operation on the anonymized
data set, wherein the operation is one of a data mining
operation or a classification operation.

11. A computer program product comprising a non-tran-
sitory computer readable storage medium having a computer
readable program recorded thereon, wherein the computer
readable program, when executed on a computing device,
causes the computing device to:

receive input data comprising a plurality of graph data

sets, wherein each graph data set comprises data for
generating a separate graph from graphs associated
with other graph data sets;
perform clustering on the graph data sets to generate a
plurality of clusters, wherein at least one cluster of the
plurality of clusters comprises a plurality of graph data
sets and wherein other clusters in the plurality of
clusters comprise one or more graph data sets;

determine for each cluster in the plurality of clusters, an
aggregate property of the cluster;
generate for each cluster in the plurality of clusters,
synthetic data representing the cluster, from the deter-
mined aggregate properties of the clusters; and

execute, by the processor or another computing device,
one or more applications on the synthetic data to
perform an operation on the synthetic data while pre-
serving a privacy aspect of the input data.

12. The computer program product of claim 11, wherein
the computer readable program further causes the computing
device to receive an anonymity level value k, wherein each
cluster in the plurality of clusters comprises at least k
number of graphs.

13. The computer program product of claim 11, wherein
the aggregate property of the cluster comprises a set of
frequent sub-graphs of the cluster.

14. The computer program product of claim 11, wherein
the computer readable program causes the computing device
to perform clustering on the graph data sets to generate a
plurality of clusters by:

creating an initial set of seed graphs; and

assigning, for each graph in the input data, the graph to a

closest seed graph to generate an initial plurality of
clusters.

15. The computer program product of claim 14, wherein
the computer readable program causes the computing device
to perform clustering on the graph data sets to generate a
plurality of clusters further by:

US 9,471,645 B2

17

iteratively performing a process comprising:

using a frequent pattern mining operation on the initial
plurality of clusters to recreate a new improved set of
seed graphs;

determining if the process has reached a convergence
state; and

in response to the process not having reached a con-
vergence state, assigning graphs in the input data to
a closest seed graph in the improved set of seed
graphs.

16. The computer program product of claim 11, wherein
the computer readable program causes the computing device
to determine, for each cluster in the plurality of clusters, an
aggregate property of the cluster by determining a relative
frequency of each edge in the cluster, wherein the relative
frequency is a measure of a number of times that an edge
appears in each of the graphs of the cluster.

17. The computer program product of claim 16, wherein
the computer readable program further causes the computing
device to determine, for each cluster in the plurality of
clusters, an aggregate property of the cluster by:

determining a correlation between every pair of edges in

the cluster as defined by a coefficient of correlation of
the presence of the edges between a pair of graphs in
the cluster; and

storing results of determining the correlation between

every pair of edges in a correlation matrix data struc-
ture.

18. The computer program product of claim 17, wherein
the computer readable program further causes the computing
device to generate, for each cluster in the plurality of
clusters, synthetic data representing the cluster by:

generating eigenvectors of a corresponding covariance

matrix based on the correlation matrix data structure;
and

generating synthetic data for each cluster in the plurality

of clusters based on the generated eigenvectors.

5

10

25

35

18

19. The computer program product of claim 18, wherein
the computer readable program further causes the computing
device to generate synthetic data for each cluster in the
plurality of clusters based on the generated eigenvectors by:

generating data points for each cluster based on the

eigenvectors;

applying a rounding operation to the data points generated

based on the eigenvectors to thereby generate binary
values based on the data points generated based on the
eigenvectors; and

reporting the binary values as an anonymized data set for

the input data.

20. An apparatus, comprising:

a processor; and

a memory coupled to the processor, wherein the memory

comprises instructions which, when executed by the
processor, cause the processor to:

receive input data comprising a plurality of graph data

sets, wherein each graph data set comprises data for
generating a separate graph from graphs associated
with other graph data sets;
perform clustering on the graph data sets to generate a
plurality of clusters, wherein at least one cluster of the
plurality of clusters comprises a plurality of graph data
sets and wherein other clusters in the plurality of
clusters comprise one or more graph data sets;

determine for each cluster in the plurality of clusters, an
aggregate property of the cluster;
generate for each cluster in the plurality of clusters,
synthetic data representing the cluster, from the deter-
mined aggregate properties of the clusters; and

execute, by the processor or another computing device,
one or more applications on the synthetic data to
perform an operation on the synthetic data while pre-
serving a privacy aspect of the input data.

#* #* #* #* #*

